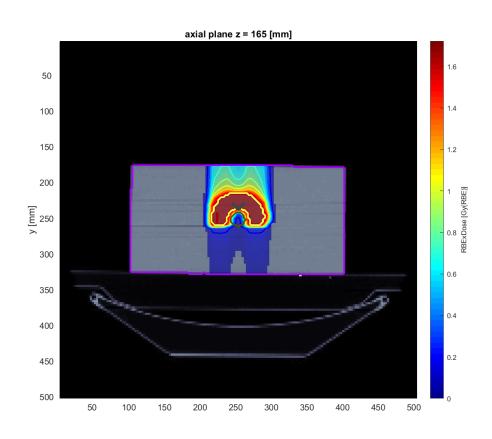

MAT RAD EDUCATIONAL

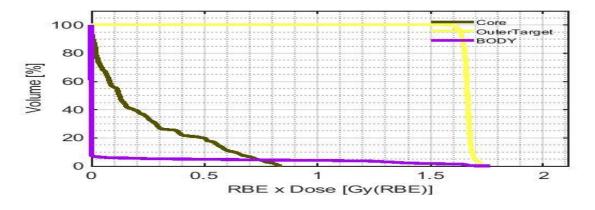
GIANNIS PANTOLEON-ΓΙΑΝΝΗΣ ΠΑΝΤΟΛΕΩΝ


CASE: C PHANTOM TG119 [photons]

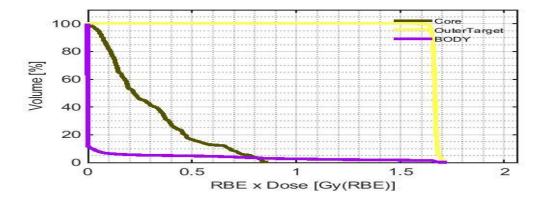
CASE: C PHANTOM TG119 [protons]

CASE: C PHANTOM TG119 [carbon ions]

What is this method`s target?


► The target is to radiate in and through the regions, where cancerous cells may lie with the biggest dose of radiation possible, without affecting healthy tissues.

RESULTS: Photons


Core 0.8461 0 0.2259 0.2391 OuterTarget 1.7643 1.5599 1.6652 0.0201 BODY 1.7643 0 0.0652 0.2890	OuterTarget 1.7643 1.5599 1.6652 0.0201		max	min	mean	std
		Core	0.8461	0	0.2259	0.2391
BODY 0.2890	BODY 0.2890	OuterTarget	1.7643	1.5599	1.6652	0.0201
		BODY	1.7643	0	0.0652	0.2890

RESULTS: Protons

Core 0.8461 0 0.2259 0.2391 OuterTarget 1.7643 1.5599 1.6652 0.0201 BODY 1.7643 0 0.0652 0.2890		max	min	mean	std
	Core	0.8461	0	0.2259	0.2391
BODY 1.7643 0 0.0652 0.2890	OuterTarget	1.7643	1.5599	1.6652	0.0201
	BODY	1.7643	0	0.0652	0.2890

RESULTS: Carbon Ions

	max	min	mean	std
Core	0.8668	0.0056	0.2975	0.2199
OuterTarget	1.7224	1.5684	1.6659	0.0117
BODY	1.7224	0	0.0582	0.2550

Comparing my Results

- ▶ In these three charts we can observe tha GTV, PTV and CTV regions which are the target regions, absorb the biggest dose of radiation. Radiating with protons is not as penetrative as the two other methods, even healthy tissue receives radiation.
- ► Conclusionally, the proton and heavy ion methods are suggested more because the patient have the least side effects that are possible.